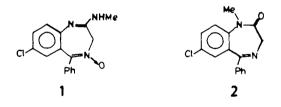
BENZOXADIAZOCINES, BENZOTHIADIAZOCINES AND BENZOTRIAZOCINES—I

GENERAL CONSIDERATIONS AND THE SYNTHESIS OF TWO 3,1,6-BENZOXADIAZOCINES

GYULA HORNYÁK*

Research Group for Alkaloid Chemistry of the Hungarian Academy of Sciences, Budapest, Hungary

and


KÁROLY LEMPERT*

Department of Organic Chemistry, Technical University, H-1521, Budapest, Hungary

(Received in U.K. 19 April 1982)

Abstract—A general method of synthesis for derivatives of the novel 3,1,6-benzoxadiazocine, 3,1,6-benzothiadiazocine and 1,3,6-benzothiazocine ring systems is described, and the method is applied for the preparation of two 3,1,6-benzoxadiazocine derivatives.

The discovery of the potent tranquilizers Chlorodiazepoxide (Librium[®], 1) and Diazepam (Valium[®], 2) has stimulated the synthesis and pharmacological screening of a great number of related substances—among them compounds having the two N atoms in other than positions 1 and 4 of the 7-membered ring,† or containing additional heteroatoms or heterorings of different size in many laboratories all over the world.

Strikingly, a comparatively small number of benzocondensed derivatives of 8-membered heterocycles containing three heteroatoms, among them at least two N atoms, is known. 1,3,6-^{4.5} and 4,1,5-Benzoxadiazocine derivatives^{6.7} have been studied mainly by Sternbach's group, and 2,1,5-benzothiadiazocine derivatives by Austrian scientists.⁸⁻¹⁰ Some derivatives of the 1,2,5-^{11,12} and 1,4,5-benzothiadiazocine ring systems¹³ are also known. The 1,4,5-benzotriazocine system has been studied rather extensively, mainly in Japanese laboratories.¹⁴⁻²³

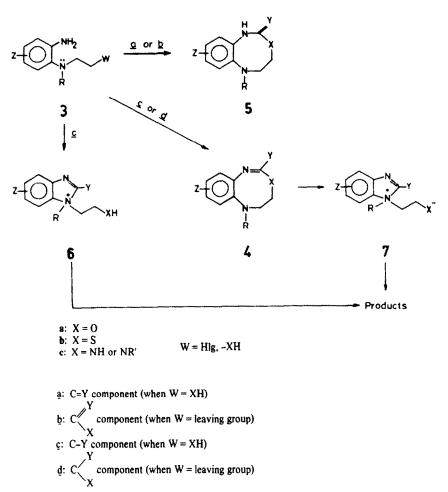
We have therefore decided to synthesize a series of derivatives of the hitherto unknown 3,1,6-benzoxadiazocine (4a, 5a), 3,1,6-benzothiadiazocine (4b, 5b) and 1,3,6-benzotriazocine ring system (4c, 5c) for pharmacological screening. The strategy conceived for the preparation of these compounds consisted in the synthesis of the precursors 3a-c which, with the exception of either the C atom in position 2 or the C and X atoms in positions 2 and 3, already contained all ring atoms of the desired compounds, and subsequent ring closure with the aid of suitable C_1 and C-X components, respectively (Chart 1).

In order to avoid ring closure in the wrong direction $(3 \rightarrow 6)$ as well as, after ring closure in the desired direction $(3 \rightarrow 4 \text{ or } 5)$, subsequent ring contraction (e.g. $4 \rightarrow 7$; Chart 1), the nucleophilicity of the R-substituted N atom in 3 and 4, respectively, had to be kept as low as possible. Therefore we started our studies with type 3 compounds in which R is an alkyl- or arylsulfonyl group.

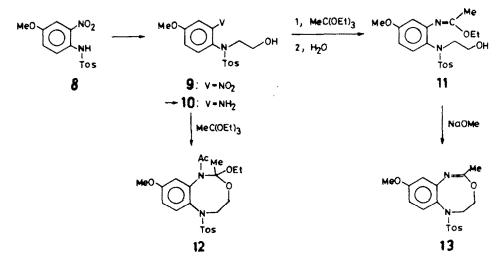
In the present paper we report on the application of the above method for the synthesis of two 3,1,6-benzoxadiazocine derivatives; in the accompanying papers the syntheses of type 4 and 5 compounds with X = NHor NR' and S, $R = MeSO_{2^{-}}$, $ArSO_{2^{-}}$ will be described.

The method of synthesis of the benzoxadiazocine derivatives 12 and 13 is shown in Chart 2. For details see Experimental.

EXPERIMENTAL


IR spectra were obtained in KBr pellets using Perkin-Elmer Model 421 and Spectromom Model 2000 (Hungarian Optical Works, Budapest) spectrometers. ¹H NMR spectra were obtained at 60 MHz using a Perkin-Elmer Model R-12 spectrometer.

N - (2 - Hydroxyethyl) - 4' - methoxy - 2' - nitrotosylanilide (9).Compound 8²⁴ (33.6 g; 0.1 mmol) was added to a soln of Na (2.3 g; 0.1 mol) in dry MeOH (200 ml). The mixture was refluxed for 0.5 hr and concentrated to 1/3 its volume to obtain the Na salt of 8 (30 g; 84%) in the form of red crystals which were filtered off and washed with ether.


The Na salt was dissolved in DMF (100 ml). 2-Chloroethanol (12 g; 0.15 mol) was added, and the mixture was stirred for 10 hr at 120° and poured into 400 ml soln of NaOH (2 g) to obtain the light yellow crystals (22.5 g; 61.5%) of the title compound, m.p. 121-122° from CH₂Cl₂-pentane. (Found: C, 52.54; H, 5.20; N, 7.47. C₁₆H₁₈N₂O₆S (366.4) requires: C, 52.45; H, 4.95; N, 7.65%.)

2' - Amino - N - (2 - hydroxyethyl) - 4' - methoxytosylanilide(10). A soln of 9 (18.8 g; 50 mmol) in 2-propanol (250 ml) wasreduced at normal pressure and room temp. in the presence of a8% Pd-C catalyst (2 g). The catalyst was filtered off and the oilyresidue was triturated with ether to obtain the colourless crystals(15.5 g; 92%) of the title compound, m.p. 85-87° from EtOH.

⁺For reviews on diazepines and benzodiazepines, see Refs. 1-3.

(Found: N, 8:14; S, 9.78%. $C_{16}H_{20}N_2O_4S$ (336.4) requires: N, 8.33; S, 9.53%.)

The hydrochloride was obtained by dissolving the amine (3.4 g; 10 mmol) in EtOH (30 ml), previously saturated with dry HCl at 0°, and precipitating the colourless crystals, m.p. 202-203° (dec), of the salt (3.4 g; 91%) by adding hexane to the soln. (Found: Cl. 9.69; N, 7.62; S, 8.87%. C₁₆H₂₁ClN₂O₄S (373.9) requires: Cl, 9.51; N, 7.51; S, 8.60%.)

Ethyl N - $\{2 - [N - (2 - hydroxyethyl) - N - tosylamino] - 4 - methoxyphenyl<math>acetamidate$ (11). A mixture of 10 (3.4 g; 10 mmol) and triethyl orthoacetate (10 ml) was refluxed for 6 hr and evaporated to dryness in vacuo. The residue was stirred at

room temp. for 2 days with ether (50 ml) saturated previously with water. The mixture was evaporated to dryness and the crystalline residue was triturated with a small amount of ether to obtain 2.0 g (49%) of the title compound, m.p. 116-117° from CH₂Cl₂-pentane. (Found: C, 58.84; H, 6.42; N, 7.09; S, 8.04%; M⁺ 406.15289. C₂₀H₂₆N₂O₃S (406.5) requires: C, 59.09; H, 6.44; N, 6.89; S, 7.89%; M, 406.15623.)

IR: 3350, 1670, 1350, 1290, 1160 cm^{-1} ; ¹H NMR (CCL): δ 1.42t + 4.22q (J = 7.1 Hz); 2.00s; 2.46s; 3.74s; 6.27–6.45m; 7.27 + 7.60 (AA'BB'; J = 8.5 Hz).

Alcoholysis. An anhyd. ethanolic (10 ml) soln of 11 (0.4 g) was saturated with dry HCl at 0°. Upon addition of ether 0.4 g of 10 HCl, m.p. 202-203° (from EtOH-ether), identical with the authentic sample obtained as described above, was precipitated.

1 - Acetyl - 2 - ethoxy - 9 - methoxy - 2 - methyl - 6 - tosyl - 1,4,5,6 - tetrahydro - 2H - 3,1,6 - benzoxadiazocine (12). The mixture of 10 (3.4 g; 10 mmol) and triethyl orthoacetate (10 ml) was refluxed for 6 hr and evaporated to dryness in vacuo. The residue was triturated with three portions (30 ml, each) of pentane to obtain the colourless crystals (3.5 g; 78%) of the title compound, m.p. 85-87° from hexane. (Found: C, 59.01; H, 6.79; N, 6.35; S, 6.75. C₂₂H₂₈N₂O₆S (448.3) requires: C, 58.90; H, 6.24; N, 6.25; S, 7.15%.)

IR: 1660, 1345, 1275, 1155 cm⁻¹; ¹H NMR (CCL): δ 1.07t + 1.32t (total intensity 3H) + 4.17q (J = 7.5 Hz); 1.25s; 1.85s; 2.44s; 3.25-3.70m; 3.78s; 6.25-7.10m; 7.42 + 7.86 (AA'BB'; J = 8.5 Hz).

Hydrolysis. A mixture of 12 (0.45 g) and 20% HClaq. (10 ml) was stirred for 2 days at room temp. and evaporated to dryness *in vacuo*. The residue was dried and recrystallized from EtOH-hexane to obtain 0.3 g of 10 HCl, m.p. 202-203°, identical with the authentic sample obtained as described above.

9 - Methoxy - 2 - methyl - 6 - tosyl - 5,6 - dihydro - 4H - 3,1,6 benzoxadiazocine (13). A mixture of 11 (0.4 g; 1 mmol), anhyd. dioxane (20 ml) and a trace of NaOMe was refluxed for 8 hr, filtered after cooling and evaporated to dryness. The residue was worked up by prep. TLC (Kieselgel PF₂₅₄₋₃₆₆, cyclohexane-EtOAc, 7:3; eluent: CH₂Cl₂) to obtain 0.2 g (55%) of the title compound, m.p. 169-170° from CCl₄. (Found: C, 59.70; H, 5.54; N, 8.04; S, 8.43. C₁₈H₂₀N₂O₄S (360.5) requires: C, 59.97; H, 5.59; N, 7.77; S, 8.89%.)

IR: 1700, 1345, 1230, 1160 cm⁻¹; ¹H NMR (CCL): δ 1.68s; 2.47s; 3.78s; 6.35–7.00m; 7.18+7.55 (AA'BB'; J = 8 Hz).

Acknowledgement—Financial support of EGyT Pharmacochemical Works, Budapest, is gratefully acknowledged.

REFERENCES

¹F. D. Popp and A. Catala Noble, Advances Heterocyclic Chemistry (Edited by A. R. Katritzky and A. J. Boulton), Vol. 8, p. 21. Academic Press, New York (1967).

- ²G. A. Archer and L. H. Sternbach, *Chem. Revs.* 68, 747 (1968). ³L. H. Sternbach, *Annu. Chem.* 83, 70 (1971).
- ³L. H. Sternbach, Angew. Chem. 83, 70 (1971).

- ⁴G. F. Field and L. H. Sternbach, ^aU.S. 3.555.022 (1971); Chem. Abstr. 75, 5980c (1971); ^bJ. Org. Chem. 33, 4438 (1968).
- ⁵R. Y. Ning, G. F. Field and L. H. Sternbach, J. Heterocyclic Chem. 7, 745 (1970).
- ⁶A. Stempel, I. Douvan, E. Reeder and L. H. Sternbach, J. Org. Chem. 32, 2417 (1969) and 33, 2963 (1968).
- ⁷P. N. Giraldi, A. Fajaneri, G. P. Tosolini, E. Dradi and W. Logemann, J. Heterocyclic Chem. 7, 1429 (1970).
- ⁸O. Hromatka, D. Binder and M. Knollmueller, *Monatsh. Chem.* 99, 1062, 1124 (1968).
- O. Hromatka, M. Knollmueller, D. Binder, H. Deschler and G. Schollnhammer, *Ibid.* p. 1111.
- ¹⁰A. Hromatka, M. Knollmueller and D. Binder, *Ibid.* p. 1117.
- ¹¹H. Zinnes, R. A. Comes and J. Shavel, Jr., J. Heterocycl. Chem. 5, 875 (1968).
- ¹²S. Chaloupka, P. Vittorelli, H. Heimgartner, H. Schmid, H. Link, K. Bernauer and W. E. Oberhansli, *Helv. Chim. Acta* 60, 2476 (1977).
- ¹³S. M. Sicardi, S. Lamdan and C. H. Gaozza, J. Heterocyclic Chem. 10, 1039 (1973).
- ¹⁴M. Shindo, M. Kakimoto and H. Nagano (Chugai Pharmaceut. Co. Ltd.) ^aGer. Offen. 2.216.837 (1972), Chem. Abstr. 78, 43542f (1973); ^bJapan Kokai 72 34.384, Chem. Abstr. 78, 58453m (1973); ^cJapan Kokai 72 34.386, Chem. Abstr. 78, 72244r (1973); ^dJapan Kokai 73 00.491, Chem. Abstr. 78, 111391h (1973).
- ¹⁵K. Kamiya, Y. Wada and M. Mishikawa, Chem. Pharm. Bull. 21, 1520 (1973).
- ¹⁶M. Kakimoto, H. Nagano and Y. Fujimura, Ger. Offen 2.308.064 (1973); Chem. Abstr. 79, 126537e (1973).
- ¹⁷K. Meguro and Y. Kuwada, Chem. Pharm. Bull. 21, 2375 (1977).
- ¹⁸H. Natsugari, K. Meguro and Y. Kuwada (Takeda Chem. Ind. Ltd.), Japan 73 33760; Chem. Abstr. 80, 121025x (1974).
- ¹⁹M. Shindo, M. Kakimoto, H. Nagano and Y. Fujimura (Chugai Pharmaceut. Co. Ltd.), ^oJapan Kokai 74 95987, Chem. Abstr. 82, 156404p (1975); ^bJapan Kokai 74 95988, Ibid. 82, 156403n (1975); ^cJapan Kokai 74 95989, Ibid. 82, 156402m (1975); ^dJapan Kokai 74 95990, Ibid. 82, 156405q (1975).
- ²⁰H. Tawada, K. Meguro, Y. Kuwata (Takeda Chem. Ind. Ltd), Japan Kokai 74 26637, Chem. Abstr. 82, 140218v (1975).
- ²¹Chugai Pharmaceut. Co. Ltd., ^aJpn. Tokkyo Koho 81 00433; Chem. Abstr. 95, 7359u (1981); ^bJpn. Tokkyo Koho 81 01312; Chem. Abstr. 95, 7362q (1981); ^cJpn. Tokkyo Koho 81 01313; Chem. Abstr. 95, 7363r (1981); ^dJpn. Tokkyo Koho 81 01314; Chem. Abstr. 95, 7364s (1981); ^cJpn. Tokkyo Koho 81 03349; Chem. Abstr. 95, 115622h (1981); ^fJpn. Tokkyo Koho 81 03350; Chem. Abstr. 95, 116623j (1981).
- ²²H. Natsugara, K. Meguro and Y. Kuwada, Chem. Pharm. Bull. 27, 2084 (1979).
- ²³J. K. Daniel and N. P. Peet, J. Heterocyclic Chem. 15, 1309 (1978).
- ²⁴F. Reverdin, Ber. Dtsch. Chem. Ges. 42, 1524 (1909).